Package: gmgm 1.1.2

gmgm: Gaussian Mixture Graphical Model Learning and Inference

Gaussian mixture graphical models include Bayesian networks and dynamic Bayesian networks (their temporal extension) whose local probability distributions are described by Gaussian mixture models. They are powerful tools for graphically and quantitatively representing nonlinear dependencies between continuous variables. This package provides a complete framework to create, manipulate, learn the structure and the parameters, and perform inference in these models. Most of the algorithms are described in the PhD thesis of Roos (2018) <https://tel.archives-ouvertes.fr/tel-01943718>.

Authors:Jérémy Roos [aut, cre, cph], RATP Group [fnd, cph]

gmgm_1.1.2.tar.gz
gmgm_1.1.2.zip(r-4.5)gmgm_1.1.2.zip(r-4.4)gmgm_1.1.2.zip(r-4.3)
gmgm_1.1.2.tgz(r-4.4-any)gmgm_1.1.2.tgz(r-4.3-any)
gmgm_1.1.2.tar.gz(r-4.5-noble)gmgm_1.1.2.tar.gz(r-4.4-noble)
gmgm_1.1.2.tgz(r-4.4-emscripten)gmgm_1.1.2.tgz(r-4.3-emscripten)
gmgm.pdf |gmgm.html
gmgm/json (API)
NEWS

# Install 'gmgm' in R:
install.packages('gmgm', repos = c('https://jeremyroos.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jeremyroos/gmgm/issues

Datasets:
  • data_air - Beijing air quality dataset
  • data_body - NHANES body composition dataset
  • gmbn_body - Gaussian mixture Bayesian network learned from the NHANES body composition dataset
  • gmdbn_air - Gaussian mixture dynamic Bayesian network learned from the Beijing air quality dataset
  • gmm_body - Gaussian mixture model learned from the NHANES body composition dataset

On CRAN:

bayesian-networksgaussian-mixture-modelsinferencemachine-learningprobabilistic-graphical-models

3.40 score 5 stars 7 scripts 248 downloads 36 exports 59 dependencies

Last updated 2 years agofrom:c9ce0c8d35. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 08 2024
R-4.5-winOKNov 08 2024
R-4.5-linuxOKNov 08 2024
R-4.4-winOKNov 08 2024
R-4.4-macOKNov 08 2024
R-4.3-winOKNov 08 2024
R-4.3-macOKNov 08 2024

Exports:add_arcsadd_nodesadd_varaggregationconditionaldensityellipsesemexpectationfilteringgmbngmdbngmminferencemerge_compnetworkparam_emparam_learnparticlespredictionpropagationrelevantremove_arcsremove_nodesremove_varrename_nodesrename_varreordersamplingsmemsmoothingsplit_compstepwisestruct_emstruct_learnstructure

Dependencies:base64encbslibcachemclicolorspacecpp11digestdplyrevaluatefansifarverfastmapfontawesomefsgenericsggplot2gluegtablehighrhtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigpurrrR6rappdirsRColorBrewerrlangrmarkdownsassscalesstringistringrtibbletidyrtidyselecttinytexutf8vctrsviridisLitevisNetworkwithrxfunyaml

Readme and manuals

Help Manual

Help pageTopics
Gaussian mixture graphical model learning and inferencegmgm-package
Add arcs to a Gaussian mixture graphical modeladd_arcs
Add nodes to a Gaussian mixture graphical modeladd_nodes
Add variables to a Gaussian mixture modeladd_var
Aggregate particles to obtain inferred valuesaggregation
Compute the Akaike Information Criterion (AIC) of a Gaussian mixture model or graphical modelAIC AIC.gmbn AIC.gmdbn AIC.gmm
Compute the Bayesian Information Criterion (BIC) of a Gaussian mixture model or graphical modelBIC BIC.gmbn BIC.gmdbn BIC.gmm
Conditionalize a Gaussian mixture modelconditional
Beijing air quality datasetdata_air
NHANES body composition datasetdata_body
Compute densities of a Gaussian mixture modeldensity
Display the mixture components of a Gaussian mixture modelellipses
Estimate the parameters of a Gaussian mixture modelem
Compute expectations of a Gaussian mixture modelexpectation
Perform filtering inference in a Gaussian mixture dynamic Bayesian networkfiltering
Create a Gaussian mixture Bayesian networkgmbn
Gaussian mixture Bayesian network learned from the NHANES body composition datasetgmbn_body
Create a Gaussian mixture dynamic Bayesian networkgmdbn
Gaussian mixture dynamic Bayesian network learned from the Beijing air quality datasetgmdbn_air
Create a Gaussian mixture modelgmm
Gaussian mixture model learned from the NHANES body composition datasetgmm_body
Perform inference in a Gaussian mixture Bayesian networkinference
Compute the log-likelihood of a Gaussian mixture model or graphical modellogLik logLik.gmbn logLik.gmdbn logLik.gmm
Merge mixture components of a Gaussian mixture modelmerge_comp
Display the graphical structure of a Gaussian mixture Bayesian networknetwork
Learn the parameters of a Gaussian mixture graphical model with incomplete dataparam_em
Learn the parameters of a Gaussian mixture graphical modelparam_learn
Initialize particles to perform inference in a Gaussian mixture graphical modelparticles
Perform predictive inference in a Gaussian mixture dynamic Bayesian networkprediction
Propagate particles forward in timepropagation
Extract the minimal sub-Gaussian mixture graphical model required to infer a subset of nodesrelevant
Remove arcs from a Gaussian mixture graphical modelremove_arcs
Remove nodes from a Gaussian mixture graphical modelremove_nodes
Remove variables from a Gaussian mixture modelremove_var
Rename nodes of a Gaussian mixture graphical modelrename_nodes
Rename variables of a Gaussian mixture modelrename_var
Reorder the variables and the mixture components of a Gaussian mixture modelreorder
Sample a Gaussian mixture modelsampling
Select the number of mixture components and estimate the parameters of a Gaussian mixture modelsmem
Perform smoothing inference in a Gaussian mixture dynamic Bayesian networksmoothing
Split a mixture component of a Gaussian mixture modelsplit_comp
Select the explanatory variables, the number of mixture components and estimate the parameters of a conditional Gaussian mixture modelstepwise
Learn the structure and the parameters of a Gaussian mixture graphical model with incomplete datastruct_em
Learn the structure and the parameters of a Gaussian mixture graphical modelstruct_learn
Provide the graphical structure of a Gaussian mixture graphical modelstructure
Summarize a Gaussian mixture model or graphical modelsummary summary.gmbn summary.gmdbn summary.gmm